Particulate Matter and Dementia

Linzie Wildenauer MS3 UMN Medical School

Minnesota Psychiatric Society

Improving Minnesota's mental health care through education, advocacy and sound psychiatric practice.

Article

Comparison of Particulate Air Pollution From Different Emission Sources and Incident Dementia in the US

Boya Zhang, PhD; Jennifer Weuve, ScD; Kenneth M. Langa, MD, PhD; Jennifer D'Souza, PhD; Adam Szpiro, PhD; Jessica Faul, PhD; Carlos Mendes de Leon, PhD; Jiaqi Gao, MPH; Joel D. Kaufman, MD; Lianne Sheppard, PhD; Jinkook Lee, PhD; Lindsay C. Kobayashi, PhD; Richard Hirth, PhD; Sara D. Adar, ScD

JAMA Internal Medicine - August 2023

Why is this relevant?

- Little current knowledge on different emission sources and dementia risk
- Aging population
 - World Health Organization:
 - 2030: 1 in 6 will be > 60
 - 2050: number of people > 80 will triple \rightarrow 426 million
 - Increasing cases of dementia
- Compounded by:
 - Worsening pollution, global warming, wildfires...

What is Particulate Matter?

- Aka PM
- Particles from different emission sources
- PM10 ≤ 10 microns
 - 10 microns or less → able to be inhaled
- PM2.5 ≤ 2.5 microns

PM2.5

- From sources in environment
 - Traffic emissions, agriculture, fires, etc.
- Risk factor for dementia
 - Livingston et al. and US Environmental Protection Agency
 - Mechanism: a few options
 - Enter CNS via blood brain barrier or olfactory bulb
 - Neuroinflammation
 - Oxidative stress secondary to lung irritation

5

Aim

Examine associations between:

- Dementia
- •AND
 - Total PM2.5 exposure
 - Source-specific PM2.5 exposure

Study Design

- Participants from Health and Retirement study cohort
 - Longitudinal, nationally-representative study on aging at University of Michigan
 - Began 1992, Surveys participants every other year
- Inclusion criteria:
 - > 50 y.o.
 - 2 interviews between 1998-2016
 - No dementia at 1st interview
- Exclusion criteria:
 - Missing information (exposures, outcomes, key covariates)

7

Assessing Total PM2.5

- Used home addresses to estimate exposure:
 - Data from environmental agencies
 - Estimations from nearby transport, land cover/use, population density, emission types, vegetation

Assessing Source-Specific PM2.5

- 9 emission sources:
 - Agriculture
 - Wildfires
 - Wind-blown dust
 - Traffic road and non-road
 - Coal combustion energy and industry
 - Other energy and industry
- Source-specific PM2.5 concentration
 - = (PM2.5_{Total}) x (PM2.5_{Source-specific fraction})

Outcomes

- Primary: Incident dementia
- Secondary: Hazard ratio for incident dementia
 - How much the dementia risk changes with different levels and sources of emissions

10

Covariates

- Personal characteristics
 - Race and ethnicity
 - Education level
 - Wealth
- Urbanicity of neighborhood
- Socioeconomic status of neighborhood

MPACTS OF CHANGE

11

Dementia Assessment

Participant able/willing to participate:
 Word recall – immediate and delayed
 Serial 7s subtraction
 Counting backwards
 Participant's memory
 Cognitive impairment
 ADL limitations

Demographics

- N = 27,857
- Avg age = 61
- Majority female (56.5%)

- Non-Hispanic Black
- Hispanic
- Other Races (American Indian, Alaska Native, Asian, Pacific Islander)

13

Results

N = 27,857 \rightarrow 15% diagnosed with dementia over avg. follow-up of 10 years

- Dementia diagnosis more likely in:
 - Non-White
 - Lower educational level
 - Lower wealth

More PM2.5 level at home address

Results

Increased PM2.5 exposure → increased risk of dementia

sources and co-pollutants

- Strongest associations:
 - Agriculture
 Strongest association when
 controlled for all other
 - Wildfires
 - Traffic
 - Coal Combustion

Results – PM2.5 Exposure

- Increased exposure in:
 - Increased age
 - Non-Hispanic Black
 - Lower education level
 - Lower wealth
- EXCEPT: PM2.5 from wildfires and windblown dust
 - Wildfires and windblown dust impact people regardless of their characteristics

17

Results – Hazard Ratios

- Range: 1.0 1.17
 - Windblown dust = 1.0
 - Agriculture = 1.17
- Adjusting for all other pollutants:
 - Statistically significant HR:
 - Agriculture and Wildfire
- Estimation using HR
 - 188,000 new cases of dementia/year

Attributable to PM2.5 total exposure

Discussion - Agriculture

- Largest hazard ratio 1.17
- Large source of ammonia \rightarrow 30% of total PM2.5 in US
- Association between exposure to herbicides and neurotoxic pesticides and dementia
 - Aloiziou et al.

19

Discussion – Agriculture + Wildfires

- Individuals in rural areas
 - \uparrow exposure to agriculture and wildfires
 - Could explain disparities in rural-urban dementia risk
 - Dementia significantly more present in rural areas
 - Weden et al.

Discussion - Wildfires

- 25% of total PM2.5 in US
 - >50% in Western US
- Release of toxic components
 - Uncontrolled burning \rightarrow Not just smoke from burning trees
 - Homes, gas stations, etc.
- Burning starts in different spots
 - BUT long-range smoke goes to the same "downwind" locations
 - Many cities >30 days/year affected by smoke

21

Discussion - Wildfires

It is not getting better

- \uparrow Global warming $\rightarrow \uparrow$ temperatures
 - $\rightarrow \uparrow$ wildfire frequency and severity
 - \rightarrow earlier snow melt in Spring $\rightarrow \uparrow$ length of fire season

22

Discussion

- ~188,000/year attributable to PM2.5
 - Prevention = necessary
- Reducing PM2.5 through any means possible
 - Small scale: Personal air purifiers
 - Large scale: New emission regulations

23

Previous Studies

Consistent findings:

- Wilker et al. Harvard TH Chan School of Public Health, April 2023
 - Similar Hazard Ratio
- Ailshire and Walsemann, 2020
 - Similar increased risk of PM2.5 exposure in those with lower education levels

24

Previous Studies

Only one other study has examined specific emission sources:

• Oudin et al. - 2018

• Similar results

- 2 emission sources vs 9 in current study
 - Traffic and residential wood burning
- \uparrow exposure to both sources $\rightarrow \uparrow$ hazard ratio of dementia

25

Strengths

- First study to evaluate >2 specific emission sources
- Estimated PM2.5 exposure with exact home addresses
 - Compared to previous study using zip codes
- Nationally-representative cohort
- Population from urban and rural areas

Limitations

- Potential underestimation of dementia
 - Health survivor bias
 - Those with comorbidities associated with pollution and dementia = those most likely to be lost to follow-up
- There are other trends related to dementia that are not related to pollution
- Different birth years of participants
 - Pollution levels change over time
 - Solution: Grouped by birth years

rs

27

Conclusion

- Increased particulate matter exposure
 - → Increased dementia risk
- If pollution, global warming, wildfires, etc. continue to increase
 - \rightarrow Incidence of dementia will keep increasing
- Intervention on specific emission sources = key to healthy cognitive aging
 - Make the earth safe, keep our brains safe

References

- M. Steverson. Ageing and Health. World Health Organization. October 2022.
- LivingstonG,HuntleyJ,SommerladA,etal. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020; 396(10248):413-446. doi:10.1016/S0140-6736(20) 30367-6
- US Environmental Protection Agency. Integrated Science Assessment (ISA) for Particulate Matter (Final Report, December 2019). Accessed June 30, 2023. https://cfpub.epa.gov/ncea/isa/recordisplay. cfm?deid=347534
- AloizouA-M,SiokasV,VogiatziC,etal. Pesticides, cognitive functions and dementia: a review. *Toxicol Lett.* 2020;326:31-51. doi:10.1016/j. toxlet.2020.03.005
- WedenMM,ShihRA,KabetoMU,LangaKM. Secular trends in dementia and cognitive impairment of US rural and urban older adults. Am J Prev Med. 2018;54(2):164-172. doi:10.1016/j. amepre.2017.10.021
- WilkerEH,OsmanM,WeisskopfMG.Ambient air pollution and clinical dementia: systematic review and meta-analysis. BMJ. 2023;381:e071620. doi:10.1136/bmj-2022-071620
- AilshireJ,WalsemannKM.Education differences in the adverse impact of PM2.5 on incident cognitive impairment among US older adults. J Alzheimer Dis. 2021;79(2):1-11. doi:10.3233/ JAD-200765
- OudinA,SegerssonD,AdolfssonR,ForsbergB. Association between air pollution from residential wood burning and dementia incidence in a longitudinal study in Northern Sweden. *PLoS One*. 2018;13(6):e0198283. doi:10.1371/journal.pone. 0198283

