Particulate Matter and Dementia

Linzie Wildenauer
MS3 UMN Medical School

Article

Comparison of Particulate Air Pollution From Different Emission Sources and Incident Dementia in the US

Boya Zhang, PhD; Jennifer Weuve, ScD; Kenneth M. Langa, MD, PhD; Jennifer D’Souza, PhD; Adam Szpiro, PhD; Jessica Faul, PhD; Carlos Mendes de Leon, PhD; Jiaqi Gao, MPH; Joel D. Kaufman, MD; Lianne Sheppard, PhD; Jinkook Lee, PhD; Lindsay C. Kobayashi, PhD; Richard Hirth, PhD; Sara D. Adar, ScD

JAMA Internal Medicine - August 2023
Why is this relevant?

• Little current knowledge on different emission sources and dementia risk

• Aging population
 • World Health Organization:
 • 2030: 1 in 6 will be > 60
 • 2050: number of people > 80 will triple → 426 million
 • Increasing cases of dementia

• Compounded by:
 • Worsening pollution, global warming, wildfires...

What is Particulate Matter?

• Aka PM

• Particles from different emission sources

• PM10 ≤ 10 microns
 • 10 microns or less → able to be inhaled

• PM2.5 ≤ 2.5 microns
PM2.5

• From sources in environment
 • Traffic emissions, agriculture, fires, etc.

• Risk factor for dementia
 • Livingston et al. and US Environmental Protection Agency
 • Mechanism: a few options
 • Enter CNS via blood brain barrier or olfactory bulb
 • Neuroinflammation
 • Oxidative stress secondary to lung irritation

Aim

Examine associations between:

• Dementia
• AND
 • Total PM2.5 exposure
 • Source-specific PM2.5 exposure
Study Design

• Participants from Health and Retirement study cohort
 • Longitudinal, nationally-representative study on aging at University of Michigan
 • Began 1992, Surveys participants every other year

• Inclusion criteria:
 • > 50 y.o.
 • 2 interviews between 1998-2016
 • No dementia at 1st interview

• Exclusion criteria:
 • Missing information (exposures, outcomes, key covariates)

Assessing Total PM2.5

• Used home addresses to estimate exposure:
 • Data from environmental agencies
 • Estimations from nearby transport, land cover/use, population density, emission types, vegetation
Assessing Source-Specific PM2.5

• 9 emission sources:
 • Agriculture
 • Wildfires
 • Wind-blown dust
 • Traffic – road and non-road
 • Coal combustion – energy and industry
 • Other energy and industry

• Source-specific PM2.5 concentration

\[\text{PM2.5}_{\text{Total}} \times \text{PM2.5}_{\text{Source-specific fraction}} \]

Outcomes

• Primary: Incident dementia

• Secondary: Hazard ratio for incident dementia

 • How much the dementia risk changes with different levels and sources of emissions
Covariates

• Personal characteristics
 • Race and ethnicity
 • Education level
 • Wealth

• Urbanicity of neighborhood

• Socioeconomic status of neighborhood

Dementia Assessment

• Participant able/willing to participate:
 • Word recall – immediate and delayed
 • Serial 7s subtraction
 • Counting backwards

• Participant unable/unwilling to participate:
 → Conversation with proxy regarding:
 • Participant’s memory
 • Cognitive impairment
 • ADL limitations
Demographics

- N = 27,857
- Avg age = 61
- Majority female (56.5%)

Results

N = 27,857 → 15% diagnosed with dementia over avg. follow-up of 10 years

- Dementia diagnosis more likely in:
 - Non-White
 - Lower educational level
 - Lower wealth
 - More PM2.5 level at home address
Results

- Increased PM2.5 exposure → increased risk of dementia

- Strongest associations:
 - Agriculture
 - Wildfires
 - Traffic
 - Coal Combustion

Midwest: Agriculture, traffic, energy production
West: Wildfires
Southwest: Windblown dust
Results – PM2.5 Exposure

• Increased exposure in:
 • Increased age
 • Non-Hispanic Black
 • Lower education level
 • Lower wealth

• EXCEPT: PM2.5 from wildfires and windblown dust
 • Wildfires and windblown dust impact people regardless of their characteristics

Results – Hazard Ratios

• Range: 1.0 - 1.17
 • Windblown dust = 1.0
 • Agriculture = 1.17

• Adjusting for all other pollutants:
 • Statistically significant HR:
 • Agriculture and Wildfire

• Estimation using HR
 • 188,000 new cases of dementia/year
 • Attributable to PM2.5 total exposure
Discussion - Agriculture

• Largest hazard ratio – 1.17

• Large source of ammonia → 30% of total PM2.5 in US

• Association between exposure to herbicides and neurotoxic pesticides and dementia
 • Aloiziou et al.

Discussion – Agriculture + Wildfires

• Individuals in rural areas
 • ↑ exposure to agriculture and wildfires

• Could explain disparities in rural-urban dementia risk
 • Dementia significantly more present in rural areas
 • Weden et al.
Discussion - Wildfires

• 25% of total PM2.5 in US
 • >50% in Western US
• Release of toxic components
 • Uncontrolled burning → Not just smoke from burning trees
 • Homes, gas stations, etc.
• Burning starts in different spots
 • BUT long-range smoke goes to the same “downwind” locations
 • Many cities >30 days/year affected by smoke

Discussion - Wildfires

• It is not getting better

• ↑Global warming → ↑ temperatures
 • → ↑ wildfire frequency and severity
 • → earlier snow melt in Spring → ↑length of fire season
Discussion

• ~$188,000/\text{year}$ attributable to PM2.5
 • Prevention = necessary

• Reducing PM2.5 through any means possible
 • Small scale: Personal air purifiers
 • Large scale: New emission regulations

Previous Studies

Consistent findings:

• Wilker et al. - Harvard TH Chan School of Public Health, April 2023
 • Similar Hazard Ratio

• Ailshire and Walsemann, 2020
 • Similar increased risk of PM2.5 exposure in those with lower education levels
Previous Studies

Only one other study has examined specific emission sources:

- Oudin et al. - 2018

- 2 emission sources vs 9 in current study
 - Traffic and residential wood burning
 - ↑ exposure to both sources → ↑ hazard ratio of dementia
 - Similar results

Strengths

- First study to evaluate >2 specific emission sources
- Estimated PM2.5 exposure with exact home addresses
 - Compared to previous study using zip codes
- Nationally-representative cohort
- Population from urban and rural areas
Limitations

• Potential underestimation of dementia
 • Health survivor bias
 • Those with comorbidities associated with pollution and dementia = those most likely to be lost to follow-up

• There are other trends related to dementia that are not related to pollution

• Different birth years of participants
 • Pollution levels change over time
 • Solution: Grouped by birth years

Conclusion

• Increased particulate matter exposure
 → Increased dementia risk

• If pollution, global warming, wildfires, etc. continue to increase
 → Incidence of dementia will keep increasing

• Intervention on specific emission sources = key to healthy cognitive aging
 • Make the earth safe, keep our brains safe
References